Brevet Blanc 2 – Éléments de correction – mai 2024

Des pistes pour arriver aux bonnes réponses mais il y a parfois d'autres façons de faire.

Exercice 1

 $1-C: 5-2\times(-3)=5+6=11$

2-B: x=1 donc $f:1 \mapsto 1+1=2$

 $3-B: (x+4)(2x-3) = x \times 2x-x \times 3+4 \times 2x-4 \times 3=2x^2-3x+8x-12=2x^2+5x-12$

 $4-C:5\times5=25$

5-B: règle d'addition de 2 fractions ou vérification à la calculatrice

Exercice 2 Présentation des calculs dans un tableau pour les mettre en regard des étapes des programmes.

Programme 1	Question 1	Question 2	Question 3
Choisir un nombre	• 3	• -2	• x
• Soustraire 5	• 3-5= -2	• -2-5= -7	• x-5
Multiplier par 4	• -2×4= -8	• -7×4= -28	$(x-5)\times 4$ = 4(x-5)
Programme 2			
• Choisir un nombre	• 3	• -2	• x
• Multiplier par 6	• 3×6= 18	• -2×6=-12	• <i>x</i> *6=6 <i>x</i>
• Soustraire 20	• 18-20= -2	• -12-20=-32	• 6x-20
• Soustraire le double du	• -2-(2×3)	• -32-(2×(-2))	• $6x-20-(2*x)$
nombre de départ	= -2-6	= -32-(-4)	=6x-20-2x
_	= -8	= -32+4 = -28	= 4x-20

1.a Le résultat du programme 1 est -8. - 1.b Le résultat du programme 2 est -8.

2. On obtient bien le même résultat -28 en choisissant -2 pour les deux programmes.

3. On a choisi un nombre x pour appliquer les 2 programmes.

En développant 4(x-5) obtenu pour le programme 1, on obtient $4 \times x-4 \times 5$ donc 4x-20 ce qui est bien le résultat du programme 2 quand on choisit aussi x pour l'appliquer.

Donc les deux programmes donnent le même résultat pour n'importe quel nombre choisi au départ.

Exercice 3

- 1. $69=3\times23$, $1150=2\times5^2\times23$ et $4140=2^2\times3^2\times5\times23$.
- 2. Le nombre de marins doit diviser 69, 1150 et 4140.

Seul le facteur 23 est commun aux trois décompositions donc il y a 23 marins à bord.

Exercice 4

1. Le triangle BCD est rectangle en C donc, d'après la propriété de Pythagore, BD²=BC²+CD²

D'où BD² = $1.5^2+2^2=2.25+4=6.25$

Donc BD = $\sqrt{6,25}$ = 2,5. Donc **BD=2,5** km

- **2.** Le triangle BCD est rectangle en C donc $(BC)\bot(CE)$. Le triangle DEF est rectangle en E donc $(EF)\bot(CE)$. Les droites (BC) et (EF) sont perpendiculaires à la même droite (CE) donc (BC)//(EF).
- 3. Les droites (BF) et (CE) sont sécantes en D et (BC)//(EF)

donc, d'après la propriété de Thalès, $\frac{DF}{DB} = \frac{DE}{DC} = \frac{EF}{BC}$ d'où $\frac{DF}{2,5} = \frac{5}{2} = \frac{EF}{1,5}$.

Des 2 premiers rapports on tire par la règle des produits en croix DF= $2.5 \times 5 \div 2$ donc **DF=6.25 km**.

4. AB+BD+DF+FG=7+2,5+6,25+3,5=19,25 donc le parcours fait **19,25 km**.

5. On dresse ce tableau de proportionnalité pour trouver le temps t en secondes par « produits en croix » :

Distance (km)	16	7
durée (s)	3600	t

$$t=7\times3600 \div 16$$

 $t=1575 \text{ s}$

La division euclidienne de 1575 par 60 donne le quotient 26 et le reste 15, donc t=26 min 15 s. Pour aller du point A au point B, Mathilde mettra 26 min 15 s.

Exercice 5

1. Dans le triangle ACD rectangle en D, [CA] est l'hypoténuse et [DC] le côté adjacent de l'angle \hat{C} .

Donc $\cos(\hat{C}) = \frac{DC}{CA}$ et $\cos(24^\circ) = \frac{DC}{5.6}$ ainsi $0.9135 \approx \frac{DC}{5.6}$ et $DC \approx 5.6 \times 0.9135$ d'où $DC \approx 5.1$ km.

2. Dès lors sin(\hat{C})= $\frac{DA}{CA}$ et sin(24°)= $\frac{DA}{5,6}$ ainsi 0,4067≈ $\frac{DA}{5,6}$ et DA≈5,6×0,4067 d'où DC≈2,3 km.

5,1+2,3=7,4 donc le voilier 2 fait environ 7,4 km.

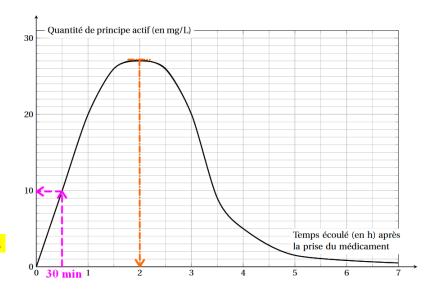
Dans le triangle ABC rectangle en B, d'après la propriété de Pythagore, $AC^2=AB^2+BC^2$ donc $5,6^2=4,8^2+BC^2$ et $31,36=23,04+BC^2$ donc $BC^2=8,32$ et $BC=\sqrt{8,32}$ donc $BC\approx2,9$ km. 4,8+2,9=7,7 donc **le voilier 1 fait donc 7,7 km**.

Comme 7,4<7,7, le voilier 2 a donc une trajectoire plus courte que celle du voilier 1. Il arrivera donc le 1^{er}!

Exercice 6

Partie A

- 1. Sur le graphique on repère 30 min sur l'axe des abscisses et le point de la courbe correspondant a pour ordonnée 10 (voir flèche rose -->) donc il y a 10 mg/L de principe actif au bout de 30 min.
- 2. Sur le graphique la courbe est au plus haut au niveau du point d'abscisse 2 (voir flèche orange -.->) donc la quantité de principe actif est la plus élevée au bout de 2h.



Partie B

On applique la formule $m=V\times d\times 7.9$ aux 2 boissons sachant que 5%=0,05, 12%=0,12 et 125mL=12,5cL :

Boisson 1 : m_1 =33×0,05×7,9=13,035 g Boisson 2 : m_2 =12,5×0,12×7,9=11,85 g

Donc la boisson 1 contient bien une masse d'alcool supérieure à celle de la boisson 2.

Exercice 7

1. Script du bloc « bassin »

définir bassin
stylo en position d'écriture
répéter 2 fois
avancer de 30
tourner à gauche de 90 degrés
avancer de 150
tourner à gauche de 90 degrés

Sur le schéma ci-dessus, on voit qu'il y a 5 intervalles marqués d'un ? entre 6 segments mesurant 30 pixels, donc on a l'opération à trou 6×30+5×?=220 soit 180+5×?=220, or 220-180=40 et 5×?=40 et donc ?=8. Le « sprite » revenant à son point de départ une fois le « bassin » dessiné (ex : croix sur le 1^{er} bassin), il doit avancer de 30 puis de 8 pixels pour passer au dessin du bassin suivant! Soit 38 pixels. La valeur qui doit être placée dans le dernier bloc « avancer de » est 38.